Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Control ; 120: 107550, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33536722

RESUMO

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31990642

RESUMO

Titanium dioxide is a white colourant authorised as food additive E171 in the EU and is applied in a range of food products. Currently the EU specifications for E171 do not refer to the characterisation of particle size distribution; however, this may be requested in the near future. Only a few studies have been published to date reporting data on the size distribution of food grade titanium dioxide. The aim of this study was to characterise the size distribution of titanium dioxide particles contained in eight confectionery products and the pristine titanium dioxide samples used in each of the products. This allowed the direct comparison of the particle size distribution in both the pristine and the extracted materials. By using various analytical techniques, such as transmission electron microscopy, single particle inductively coupled plasma mass spectrometry (sp-ICPMS) and centrifuge liquid sedimentation (CLS) for the characterisation and quantification of the titanium dioxide particle sizes, the impact of the instrumentation on the results was systematically studied. The volume-specific surface area (VSSA) and crystalline structure were also determined for all additives.


Assuntos
Aditivos Alimentares/química , Nanopartículas/química , Titânio/química , Cristalização , Análise de Alimentos/métodos , Tamanho da Partícula , Propriedades de Superfície
3.
Anal Bioanal Chem ; 411(22): 5817-5831, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31227846

RESUMO

Synthetic amorphous silica is widely used in food processing as a food additive (E551) due to its properties as a flavour carrier and anti-caking agent. The direct measurement of E551 suspended or embedded in complex matrices is difficult without prior removal of the matrix components. The isolation of nanoparticles from the matrix is hence the first step towards their comprehensive characterization. Due to its complexity, matrix removal is frequently not trivial and may cause modification of the number-size distribution of the silica particles. The isolation of engineered silica nanoparticles by removal of the matrix with microwave-assisted acidic digestion is demonstrated methodologically using both monodisperse (size standards) and polydisperse (E551) particles spiked into ultrapure water and tomato sauce. For the characterization of the isolated nanoparticles, asymmetric field flow fractionation (AF4) coupled to multi-angle laser light scattering (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) were chosen. The combination of ICP-MS and ultracentrifugation allowed for the rapid and reliable measurement of the dissolved fraction of SiO2. The results show that microwave-assisted acidic digestion partially dissolves silica nanoparticles. Moreover, the digestion conditions, in particular the low pH value, lead to strong agglomeration of the particles. A complete deagglomeration is not achieved, even when exposing the suspension to elevated sonication doses. The consequence of these two findings is a size distribution of particles after acidic digestion that is different from the original distribution before digestion. This result may have an impact on the evaluation of whether the material is a nanomaterial according to the recommended definition of the European Commission. Graphical abstract.

4.
J Chromatogr A ; 1566: 13-22, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29945788

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) have been detected in rubber and plastic components of a number of consumer products such as toys, tools for domestic use, sports equipment, and footwear, with carbon black and extender oils having been identified as principal sources. In response to these findings, the European Union Regulation (EU) No. 1272/2013 was adopted in December 2013, amending entry 50 in Annex XVII to the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) directive establishing a restriction on the content of eight individual carcinogenic PAHs in plastic and rubber parts of products supplied to the public. This work proposes a simple, relatively fast, and cost effective method for determining the concentrations of each of these eight carcinogenic PAHs for compliance testing. Existing methodologies were taken as a starting point, improving in particular the extraction and the clean-up procedures. Randall hot extraction and ultrasonic extraction were compared with regard to their extraction efficiency. Randall hot extraction proved to be more efficient (10-40%, depending on PAH). Sample extract clean-up performance was qualitatively assessed for silica-packed columns and molecularly imprinted polymers (MIPs) solid phase extraction (SPE) cartridges. The use of highly selective MIP-SPE cartridges removed most of the undesired contaminants, highlighting their superiority with regard to traditional, silica-based purification methodologies. The introduction of Randall-hot extraction for sample extraction and MIP-based solid phase extraction cartridges for selective clean-up represents a novel advance compared with previously reported methods in this field. In combination with gas chromatography-mass spectrometry (GC-MS) analyses in selected ion mode, the method was found to be excellent in terms of extraction efficiency, extract purity, and speed.


Assuntos
Técnicas de Química Analítica/métodos , Plásticos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Borracha/química , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Extração em Fase Sólida
5.
J AOAC Int ; 87(5): 1153-63, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15493673

RESUMO

The development and in-house testing of a method for the detection and quantification of cocoa butter equivalents in cocoa butter and plain chocolate is described. A database consisting of the triacylglycerol profile of 74 genuine cocoa butter and 75 cocoa butter equivalent samples obtained by high-resolution capillary gas liquid chromatography was created, using a certified cocoa butter reference material (IRMM-801) for calibration purposes. Based on these data, a large number of cocoa butter/cocoa butter equivalent mixtures were arithmetically simulated. By subjecting the data set to various statistical tools, reliable models for both detection (univariate regression model) and quantification (multivariate model) were elaborated. Validation data sets consisting of a large number of samples (n = 4050 for detection, n = 1050 for quantification) were used to test the models. Excluding pure illipé fat samples from the data set, the detection limit was determined between 1 and 3% foreign fat in cocoa butter. Recalculated for a chocolate with a fat content of 30%, these figures are equal to 0.3-0.9% cocoa butter equivalent. For quantification, the average error for prediction was estimated to be 1.1% cocoa butter equivalent in cocoa butter, without prior knowledge of the materials used in the blend corresponding to 0.3% in chocolate (fat content 30%). The advantage of the approach is that by using IRMM-801 for calibration, the established mathematical decision rules can be transferred to every testing laboratory.


Assuntos
Cacau/química , Gorduras na Dieta/análise , Triglicerídeos/análise , Calibragem , Cromatografia Gasosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...